Canadian Nu Laboratories

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

OBT analysis through the lens of combined uncertainty.

by Alexi Shkarupin

9th Organically Bound Tritium Workshop 10-12 May 2023

Scientific Uncertainty (u, s^r , σ , Δ)

- Degree of confidence or precision that scientists have in their understanding of a particular phenomenon or process
- Range of possible values within which the true value lies
- Effective way of communicating the limitation of scientific knowledge

Tritium Half-life = 4500 ± 8 days

Lucas, Luzabelle. (2000). Comprehensive Review and Critical Evaluation of the Half-Life of Tritium. Journal of Research of the National Institute of Standards and Technology. 105. 10.6028/jres.105.043.

UNRESTRICTED / ILLIMITE

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

Cause and effect diagram: Uncertainties in Tritium measurement (IAEA)

Discrepancies in OBT measurements

Fish (dry)

Venison (dry)

Moose (fresh)

Fish (fresh)

Discrepancies: 7.2 – 13 Bq/L

Discrepancies: 7.8 – 53 Bq/L

Discrepancies: 9.0 - 25 Bq/L;

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens Possible OBT results of the same fish_{fresh} samples

Example of background contamination in OBT measurements

Oven-drying of background samples in B513 on CNL site

Rinsing process was important to remove the exchangeable OBT

UNRESTRICTED / ILLIMITI

TRIC 2022 ³H Inter-comparison

Reference Value in TU				Reference Value in Bq/L			CNL results in Bq/L	
Sample	C(TU)	Unc.(TU)	σ p (TU)	C(Bq/L)	Unc. (Bq/L)	σ p (Bq/L)	C(Bq/L)	1s (Bq/L)
T40	135.500	0.670	4.10	16.004	0.079	0.484	17.09	0.35
T41	46.990	0.230	2.35	5.5495	0.027	0.278	6.296	0.24
T42	600.10	2.90	12	70.872	0.342	1.417	71.86	0.68

Why so low?

Results evaluation in Bq/L			Accuracy Test	Uncertainty Test		CPM_0	CPM _s
Sample	D = x-x _a	D% = 100(x-x _a)/x _a	z-test	ζ-test	$s_{count} =$	$\left \frac{1}{t_o}\right $ +	$-\frac{s}{t_s}$
T40	1.08	6.77%	questionable	unsatisfactory			
T41	0.75	13.5%	questionable	unsatisfactory		Ļ	
T42	0.99	1.39%	satisfactory	satisfactory		t = 24 hrs	S

OBT Dilemma

- Multiple inter-comparison exercises have been performed within the Canadian Nuclear Industry. Further inter-comparisons have been paused until the discrepancies identified in previous exercises are resolved.
 - What is the best method for OBT sample processing and analysis to get the most accurate and reproducible results?

• Partial answer from 8th OBT workshop:

• The OBT community expressed that they did not want to be mandated to use specific analysis equipment or a specific methodology. Eventually, a consensus on the most accurate option can be reached; in the meantime, laboratories prefer mastering their own methods and comparing results from those methods among one another

• Suggestion on how to answer the question:

• Design an inter-comparison study focusing on evaluation and comparison of uncertainties of every step in the methods performed by different laboratories.

Conclusions:

- Different laboratories have different accuracy and precision requirements for OBT analysis.
 - Canadian Domestic OBT exercises showed acceptable variation in measured tritium concentrations for Canadian nuclear monitoring laboratories
 - The same variation would be extreme and unsatisfactory for high precision groundwater dating service.
- OBT sample processing has several optional steps that some labs may choose to follow. It can significantly affect the quality of final results.
- There is a need to understand different method performance criteria and limitations
- A study on different method's combined uncertainties can help with the posed OBT question.

Thank you

Canadian Nuclear | Laboratoires Nucléaires Canadiens

UNRESTRICTED / ILLIMITE

Question for you:

What do you like about your OBT method?

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

UNRESTRICTED / ILLIMITE